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In recent years Dynamic Nuclear Polarization (DNP) signal enhancement techniques have become an
important and integral part of modern NMR and MRI spectroscopy. The DNP mechanisms transferring
polarization from unpaired electrons to the nuclei in the sample is accomplished by microwave (MW)
irradiation. For solid samples a distinction is made between three main enhancement processes: Solid
Effect (SE), Cross Effect (CE) and Thermal Mixing (TM) DNP. In a recent study we revisited the solid state
SE-DNP mechanism at high magnetic fields, using a spin density operator description involving spin
relaxation, for the case of an isolated electron spin interacting with neighboring nuclei. In this publication
we extend this study by considering the hyper-polarization of nuclei in systems containing two interact-
ing electrons. In these spin systems both processes SE-DNP and CE-DNP are simultaneously active. As
previously, a quantum description taking into account spin relaxation is used to calculate the dynamics
of spin systems consisting of interacting electron pairs coupled to (core) nuclei. Numerical simulations
are used to demonstrate the dependence of the SE- and CE-DNP enhancements on the MW irradiation
power and frequency, on electron, nuclear and cross relaxation mechanisms and on the spin interactions.
The influence of the presence of many nuclei on the hyper-polarization of an individual core nucleus is
examined, showing the similarities between the two DNP processes. These studies also indicate the
advantages of the CE- over the SE-DNP processes, both driving the polarization of the bulk nuclei, via
the nuclear dipole–dipole interactions.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Solid DNP is currently considered a very promising technique
for enhancing sensitivity both for solid-state NMR and for liquid
NMR through dissolution [1–4]. In a typical DNP setup the samples
include a small concentration of free radicals whose high electron
spin polarization is transferred by microwave (MW) irradiation to
the nuclei in the sample, resulting in significant enhancements of
the NMR signal of the bulk.

DNP in solids transfers polarization from the electron spins to
the nuclear spins via the hyperfine interaction. This polarization
transfer can result from three different mechanisms: (i) In the solid
effect (SE) [5,6] the polarization of a single electron is transferred
to its surrounding nuclei. This transfer is a result of MW irradiation
on the zero quantum (ZQ) or double quantum (DQ) transitions of
electron-nuclear spin systems and results in negative and positive
signal enhancements, respectively. (ii) The cross effect (CE) [7–9]
describes the transfer of polarization from a pair of coupled elec-
trons to their surrounding nuclei. When the Zeeman energies of
the two electrons differ by about the nuclear Larmor frequency
ll rights reserved.
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an on-resonance MW irradiation on one of the electrons can result
in significant nuclear polarization enhancements. (iii) The term
thermal mixing (TM) [10,11] has been used to describe systems
with relatively high electron spin concentrations. The polarization
transfer from the electrons to the nuclei in these systems has been
previously described based on thermodynamic principles, taking
into account the electron Zeeman, the nuclear Zeeman and the
electron spin–spin energy reservoirs of the system.

The three mechanisms, SE, CE and TM, have been discussed
extensively in the past and were described phenomenologically
by rate equations describing the evolution of the nuclear spin mag-
netization of the bulk under continuous MW irradiation [11–14]. In
a recent publication focused on the SE [15] we have proposed that
additional insight into the DNP phenomena can be obtained by a
quantum mechanical study of model microscopic spin systems.
Based on density matrix simulations and taking into account dif-
ferent relaxation rates in the system, we demonstrated the impor-
tant role electron spin relaxation (T1e) plays in obtaining full
polarization of the nuclear spins of the core. We also discussed
the complexity of the SE in multi-nuclear environment. Recently,
Köckenberger and co-workers performed numerical calculations
showing the SE enhancement process in larger spin systems [16].
The purpose of this publication is to extend the quantum
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mechanical approach to spin systems in which two electrons par-
ticipate in the enhancement process, as in the CE case.

As is well known, the macroscopic enhancement measured in
DNP requires both hyperfine couplings between electron spins
with their neighbor (core) nuclear spins for direct transfer of polar-
ization to these nuclei, as well as dipolar couplings between neigh-
bor nuclear spins for transfer of polarization to the bulk nuclei. The
basic mechanism of the polarization transfer to the bulk was dis-
cussed previously for SE-DNP [17]and will be extended in a sepa-
rate publication taking into account CE-DNP processes.

The CE was first described by Kessenikh et al. [7,8] and further
developed by Hwang and Hill [18,9]. Hwang and Hill measured the
frequency dependence of the DNP enhancement on a polystyrene
sample doped with a free radical. They showed that the positive
and negative DNP enhancement peaks, which are separated by
twice the nuclear Larmor frequency 2xn in case of SE-DNP on sam-
ples with low radical concentrations, are shifting toward each
other for increasing radical concentrations. To explain this phe-
nomenon they used the theoretical framework described by Kesse-
nikh et al. which takes into account two dipolar coupled electron
spins in an inhomogeneous EPR line with spectral frequencies that
are separated by the nuclear Larmor frequency ±xn. Under such
conditions the allowed transition of one electron overlaps with
the DQ or ZQ transition of the other electron. The coupling between
the electrons can then cause an increase in the efficiency of the
irradiation on the DQ or ZQ transitions. Phenomenological rate
equations for the polarizations, derived on the basis of this con-
cept, were then used to explain the shifts of the MW frequency
positions at which the largest nuclear polarization enhancements
were observed. The phenomenological description of the CE was
further developed by Wollan [14] and Wind et al. [12]. More re-
cently Griffin and coworkers [19,20], realizing the advantages of
the CE, introduced the use of bi-radicals as DNP polarizing agents.

A quantum mechanical treatment of CE-DNP was very recently
presented by Hu et al. [21,22], focusing on the polarization
enhancement by bi-radicals. In the present work a similar treat-
ment will be presented, while emphasizing the importance of elec-
tron and nuclear spin–lattice relaxation processes that result in
high polarizations of the (core) nuclei surrounding dipolar coupled
electron spin pairs.

In the following we first define the spin Hamiltonian of the spin
systems under investigation and introduce the necessary relaxa-
tion parameters that are essential to the DNP induced nuclear
polarization enhancement. After deriving the master equation of
the elements of the spin density matrix in Liouville space, the
SE- and CE-DNP mechanisms in a three-spin system, consisting
of a coupled electron spin pair interacting with a single nucleus,
are described. After introducing CE-DQ and CE-ZQ transitions and
CE conditions, numerical results are presented demonstrating the
unique properties of the spin dynamics during CE-DNP experi-
ments. These calculations are followed by a careful analysis of
the SE and CE processes in spin systems containing more than
one nucleus. Here we restrict ourselves to non-interacting nuclear
spins that resemble core nuclei. In the last section an effort is made
to estimate the steady state polarization in a spin system including
a pair of electrons surrounded by a multi-nuclear core. This discus-
sion clearly demonstrates the complexity of the CE-DNP enhance-
ment process.
2. Theoretical description

2.1. The spin interactions and spin relaxation

The theoretical framework for the following description of the
DNP mechanism is similar to what has been used to describe the
SE-DNP mechanism in our previous publication [15]. We will con-
sider here a static spin system, composed of Ne = 2 unpaired elec-
trons ðS ¼ 1

2Þ and Nn nuclei ðI ¼ 1
2Þ, positioned in an external

magnetic field pointing in the z-direction. In order not to compli-
cate our derivations we will restrict ourselves to equivalent nuclei.
We will thus refrain from discussing the influence on the DNP
experiments of additional nuclei that are very strongly hyperfine
coupled to the electrons, such as nitrogen in nitroxide radicals.
The Hamiltonian of the system is composed of the hyperfine and
dipolar interactions between the spins, and we assume that the
system experiences a continuous MW irradiation at a frequency
xMW. The form of the Hamiltonian describing this system in the
MW rotating frame is given by [23]:

H ¼ HZ þ Hhfi þ HD þ Hd þ HMW ¼ H0 þ HMW ; ð1Þ

where the different terms are:

HZ ¼ DxaSz;a þ DxbSz;b �xn

XNn

i¼1

Iz;i

Hhfi ¼
X

e¼a;b;i¼1;...;Nn

Az;eiSz;eIz;i þ
1
2

AþeiSz;eI
þ
i þ A�eiSz;eI

�
i

� �

HD ¼ Dabð3Sz;aSz;b � Sa:SbÞ
Hd ¼

X
i<j

dijð3Iz;iIz;j � Ii:IjÞ

HMW ¼ x1ðSx;a þ Sx;bÞ;

ð2Þ

with a, b denoting the two electrons and i, j = 1, . . . ,Nn the nuclei.
The first term HZ describes the Zeeman Hamiltonian in the rotating
frame. The coefficients Dxa and Dxb determine the shift of the sin-
gle electron transitions relative to the MW irradiation frequency
xMW, including the frequency shift due to the g-tensor interaction
of each electron. The nuclear Zeeman term is determined by the
Larmor frequency xn of all nuclei, which for simplicity have the
same chemical shift. The next terms Hhfi, HD and Hd represent the
spin–spin interactions including the truncated electron-nuclear
hyperfine interaction, the electron–electron dipolar interactions,
and the nuclear spin–spin dipolar interactions, respectively. All
coefficients in these terms depend on the geometry of the spin sys-
tem, i.e. on the magnitudes and directions of the inter-atomic dis-
tance vectors with respect to the external magnetic field. These
terms are combined in the spin-interaction Hamiltonian H0. The last
term HMW represents a MW field of intensity x1, applied in the x-
direction. In the following sections we restrict ourselves to systems
in which the nuclear dipole–dipole interactions are truncated by
the hyperfine interactions, i.e. with kHdk � kHhfik. Therefore in this
publication we ignore the influence of Hd on the spin dynamics.

To describe the DNP spin dynamics and evaluate the nuclear
polarizations we follow the theoretical approach introduced in
Ref. [15]. At first H0 is diagonalized:

K0 ¼ D�1H0D: ð3Þ

This results in a set of 2Nnþ2 eigenstates jkkiwith eigenvalues kk. The
MW Hamiltonian, HMW, is then transferred to the same diagonalized
frame

KMW ¼ D�1HMW D ¼ x1D�1SxD

and contains (non-diagonal) matrix elements that can be consid-
ered as effective irradiation fields x1;kk0 applied on the single tran-
sitions jkki � jkk0 i :

x1;kk0 ¼ 2hkkjKMW jkk0 i: ð4Þ

To evaluate the time evolution of the spin system we also apply the
diagonalization transformation to the product state based density
matrix
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qKðtÞ ¼ D�1qðtÞD: ð5Þ

The populations of all jkki states, defined by

pkðtÞ ¼ hkkjqKðtÞjkki; ð6Þ

are normalized such that
P

kpkðtÞ ¼ 1. At thermal equilibrium the
diagonal spin–density matrix qK

eq has populations that are deter-
mined by the Boltzmann distribution:

pk0 ð0Þ
pkð0Þ

¼ ekk0 ¼ expf�h½ðkk � kk0 Þ þxMWðMe;k �Me;k0 Þ�=kBTg; ð7Þ

where Me;k00 is the total electron angular momentum component in
the z direction of a state jkk00 i, which can be equal to ±1 or 0.

Spin–lattice and spin–spin relaxation mechanisms are intro-
duced by defining effective relaxation rates T�1

1;kk0 and T�1
2;kk0 that

drive the populations pk(t) and pk0 ðtÞ to their thermal equilibrium
ratio, according to Eq. (7), and cause a decay of the hkkjqKðtÞjkk0 i
coherences, respectively. These rates are inserted into the spin
density master equation in Liouville space in the same way as de-
scribed in Ref. [15].

The values of the spin–lattice T�1
1;kk0 ’s are derived from a set of

the electron, nuclear and cross relaxation rates, T�1
1;e; T

�1
1;i and T�1

1;ei

respectively. In Ref. [15] T�1
1;kk0 rates for all transitions jkki � jkk0 i

were calculated by assuming that they depend on the values of
the linear transition moments mkk0

e ¼ jhkkj2Sx;ejkk0 ij
2 and

mkk0

i ¼ jhkkj2D�1Ix;iDjkk0 ij
2. Here we extend these derivations by

considering in addition the bilinear transition moments
mkk0

ei ¼ jhkkjD�1ðSþe Iþi þ Sþe I�i þ S�e Iþi þ S�e I�i ÞDjkk0 ij
2, representing the

cross relaxation process originating from fluctuating hyperfine
interaction terms. Combining the influence of all three type of mo-
ments we define the spin–lattice relaxation rates by

T�1
1;kk0 ¼

X
e¼1;2;i¼1;N

mkk0

e T�1
1;e þmkk0

i T�1
1;i þmkk0

ei T�1
1;ei: ð8Þ

In all our derivations we assumed that T�1
1;e � T�1

1;i ; T
�1
1;ei. In such a

case the influence of the T�1
1;ei rate on the spin dynamics is similar

to that of T�1
1;i [15]. Electron–electron cross relaxation rates T�1

1;ab

were not taken into account during our simulations. This is justified
as long as T�1

1;e � T�1
1;ab and the combined action of T�1

1;a and T�1
1;b is

more effective than T�1
1;ab.

In the present simulations the T�1
2;kk0 relaxation rates were simply

introduced by choosing two fixed values for the decay of the elec-
tron and nuclear coherences, T�1

2e and T�1
2n respectively. To decide

which of these two values must be assigned to each T�1
2;kk0 , we

checked whether the mkk0
e coefficients are different from zero

T�1
2;kk0 ¼ T�1

2e

� �
or equal to zero T�1

2;kk0 ¼ T�1
2n

� �
[15].

After the diagonalization of H0, each of the jkki � jkk0 i eigen-
state-transitions has off-resonance values Dxkk0 , defined by

Dxkk0 ¼ ðkk � kk0 Þ; ð9Þ

in addition to its parameters x1;kk0 ; T
�1
1;kk0 and T�1

2;kk0 .
During the DNP experiments we are interested in following the

magnitudes of the polarization of each nucleus i, defined by

PiðtÞ ¼ Tr qKðtÞD�1Iz;iD
� �

; ð10Þ

which about equals to
P

kpkðtÞ½D�1IziD�kk, with [X]kk the diagonal ele-
ment of X in the {jkki} representation. The success of the polarization
transfer from the electrons to the nuclei can be evaluated by dividing
Pi(t) by the thermal equilibrium polarization of an electron, Pa(0),

pe;iðtÞ ¼ PiðtÞ=Pað0Þ

Pað0Þ ¼ �Tr qK
eqD�1Sz;aD

� �
:

ð11Þ

Our main interest lies in the spin dynamics of systems contain-
ing two electrons and many nuclei during MW irradiation. Using
the interaction parameters of Eq. (2) and the relaxation rates of
the system, the matrix elements of the Liouville superoperator
can be constructed and the master equation for the elements of
the density matrix can be solved. Its solution will enable us to de-
rive the time dependences of Pi(t). The numerical results obtained
in this paper were calculated using a self-written MATLAB (Math-
Works�) based computer program.
3. Two electrons and one nucleus

3.1. The Hamiltonian

We start by considering the Hamiltonian of a system consisting
of a single nucleus n coupled to two electrons a and b, which is the
simplest spin system experiencing the CE-DNP mechanism. The
diagonal and off-diagonal elements of H0 in the rotating frame of
the MW irradiation field are dependent on the coefficients

RAz;n ¼ Az;an þ Az;bn dAz;n ¼ Az;an � Az;bn

RAþn ¼ Aþan þ Aþbn dAþn ¼ Aþan � Aþbn

Rxe ¼ Dxa þ Dxb dxe ¼ Dxa � Dxb

ð12Þ

as well as on Dab and xn. In the product basis jva;v0b;v00ni, with v, v0,
v00 = a, b, H0 has non-zero diagonal elements Ev00n

va ;v0b
(the subscripts

define the electron states and the superscript the nuclear state)

Ean=bn
babb

¼ 1
2
�Rxe þ Dab �xn �

1
2

RAz;n

� �

Ean=bn
aabb

¼ 1
2

dxe � Dab �xn �
1
2

dAz;n

� �

Ean=bn
baab

¼ 1
2
�dxe � Dab �xn �

1
2

dAz;n

� �

Ean=bn
aaab

¼ 1
2

Rxe þ Dab �xn �
1
2

RAz;n

� �
;

ð13Þ

and the off-diagonal elements

haa;ab;anjH0jaa;ab; bni ¼ �hba; bb; anjH0jba;bb; bni ¼
1
4

RAþ

hae1; bb; anjH0jaa;bb; bni ¼ �hba;ab; anjH0jba;ab; bni ¼
1
4

dAþ

haa;bb;an=bnjH0jba;ab; an=bni ¼ �
1
2

Dab:

ð14Þ

The energy level diagram corresponding to the Zeeman interaction
of this system is shown in Fig. 1a.

As long as the hyperfine and dipolar coefficients are much smal-
ler than the nuclear Zeeman frequency, most of the differences be-
tween the energies are larger than their corresponding off diagonal
elements. Perturbation theory can then be exploited to express the
influence of these off-diagonal elements on the eigenstates of the
system (for a full diagonalization see Ref. [21]). This mixing of
the product states will be denoted by assigning the states by an
⁄-sign. In the SE-DNP case the pseudo-secular hyperfine elements
cause very weak mixing between the product spin states, resulting
in finite values for the effective MW fields x1;kk0 on the DQ and ZQ
transitions. This is shown schematically in Fig. 1c.

The off-diagonal elements of H0 can have a large impact on the
spin dynamics when pairs of energies become degenerate. One
such case occurs when two electrons have about the same Larmor
frequency, jdxej � j 12 Dabj, and a flip-flop of the electronic spin
states does not influence by much the total energy of the system:
Ean=bn

aabb
� Ean=bn

baab
. Then, the electron–electron flip-flop term of HD be-

comes very significant for the spin dynamics (as long as
jDabj � jdAzj) [23]. Even when jdxej � j 12 Dabj, the dipolar interac-
tion causes a mixing between electronic states that in turn creates
an indirect interaction between electron b and the nucleus, even



(a) (b)

(c) (d)

Fig. 1. Schematic energy level diagrams of a {eb � ea � n} spin system, in an arbitrary MW rotating frame, (a) removed from any CE condition and (b) at the CE condition
dxe = xn. In (a) the four SQb (solid arrows) and two DQan (dashed arrows) transitions are indicated, and in (b) the two SQb and two DQan forming the DQan–CE transitions.
Schematic (stick diagram) EPR spectra of the system are shown in (c) and (d), corresponding to (a) and (b), respectively. For simplicity the hyperfine interaction between the
nucleus and electron b was set to zero. The SQa transition is split into four lines, due to the electron dipolar and hyperfine interactions, while the DQan, ZQan, and SQb

transitions are split into two, due to the electron dipolar interaction. The SQb and ZQbn-CE transitions are shown in gray. The DQbn and ZQbn SE transitions are not indicated for
simplicity.
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when A�bn ¼ 0. This electron state mixing will also be marked by an
⁄-sign.

A degeneracy relevant for DNP occurs when the difference dxe

between the Larmor frequencies of the electrons equals to the nu-
clear Zeeman frequency,

dxe ffi �xn; ð15Þ

and degeneracies of the following form are encountered:

Ean
aabb
ffi Ebn

baab
or Ebn

aabb
ffi Ean

baab
: ð16Þ

We will refer to these degeneracies as the CE conditions. The Zee-
man energy level diagram of this system for Ean

aabb
ffi Ebn

baab
is schemat-

ically drawn in Fig. 1b.
To evaluate the form of the degenerate eigenstates at these con-

ditions we can use degenerate perturbation theory [24], realizing
that the degenerate states are (indirectly) connected via the non-
zero matrix elements <aa, bb; anjH0jaa, bb; bni = dA+ and <aa, bb;
bnjH0jba, ab; bni = Dab. At the DQ-CE condition dxe ’ + xn strong
state mixing can occur, and the mixed eigenstates become [25,26]

jðaa;bb;anÞ
i ¼ cos uCEjaa; bb; ani þ sinuCEjba;ab; bni
jðba;ab; bnÞ


i ¼ cos uCEjba;ab; bni � sinuCEjaa;bb;ani

tan 2uCE ’
1
2

dAþ

xn

Dij

ðdxe �xnÞ
:

ð17Þ

Similar equations can be derived for the ZQ-CE condition
dxe ’ �xn. This results in maximal state mixing for uCE = p/4,
while this mixing decays fast to zero when dxe deviates from
±xn. The degenerate state mixing is the basis of the difference be-
tween the SE-DNP and CE-DNP process and is therefore essential
for all further discussions.

At the CE conditions the DQan or ZQan transitions of nucleus n
interacting with electron a overlap with a single quantum transition
of electron b (SQb). The overlapping transitions are denoted as DQan–
CE and ZQan–CE transitions. This is schematically shown in Fig. 1d.

3.2. The effective MW fields and electronic relaxation

In the diagonalized representation the MW Hamiltonian KMW is
composed of elements that can be described as single transition
effective irradiation fields x1kk0 . Away from the CE conditions, the
DQen and ZQen DNP transitions experience weak effective fields of
magnitudes sSEx1, with sSE equal to dA+/2xn or RA+/2xn, depend-
ing on the corresponding states of the electrons. At the CE condi-
tions the effective fields of the DQen-CE and ZQen-CE transitions,
sCEx1, can become as large as x1=

ffiffiffi
2
p

. For example, the effective
MW fields of the two DQan–CE and the two ZQbn–CE transitions
(see Fig. 1d), when dxe �xn, become

aa;ab;a
njx1D�1SxDjðba;ab;bnÞ



D E
¼ ðaa;bb;anÞ
jx1D�1SxDjba;bb;b
n

D E
¼x1 sinuCE

aa;ab;b


njx1D�1SxDjðaa;bb;anÞ


D E
¼ ðba;ab;bnÞ


jx1D�1SxDjba;bb;a
n
D E

¼x1 sinuCE

ð18Þ

where uCE = p/4. Each of these x1;kk0=2 off diagonal elements of
KMW, connecting jkk iwith jkk0 i states, has its own off resonance
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value Dxkk0 (see Eq. (9)). For example, in order to apply an on-res-
onance MW field at one of the frequencies of the two DQan-CE tran-
sitions, the MW frequency must be close to xMW = xb ±
(Dab + Az,bn).

The relaxation rates in the diagonalized frame are also influ-
enced by the degeneracy. For example, at the CE condition the
cross relaxation rates T�1

1;DQ=ZQ of the DQan and ZQbn transitions be-
comes of the same order of magnitude as the electron T�1

1;e rates. In
practice this can become significant when cross-relaxation rates
induced by the hyperfine interaction are smaller than T�1

1;e . These
relaxation rates can reduce the off-resonance excitation profile of
the DQ–CE transitions, as will be explained in what follows.

3.3. Ideal DNP experiments

The polarization enhancement during an ideal SE-DNP experi-
ment was discussed in Refs. [15,17] for a two-spin system ea � n.
There it was shown that when saturating the DQan or ZQan transi-
tion, with (sSEx1)2T1DQ/ZQT2DQ/ZQ� 1 and T�1

1a � T�1
1DQ=ZQ , the SE

mechanism can result in a steady state polarization
Pn(t) = ± Pe(t) = ± Pe(0), respectively. In our three-spin system, con-
taining two electrons and one nucleus, {eb � ea � n}, the SE-DNP
mechanism can also induce nuclear polarization as long as the CE
condition is not fulfilled. In this system the DQan and ZQan transi-
tions are split by the dipolar coefficient Dab (Fig. 1c). In the ideal
case, when we succeed to saturate both DQan transitions simulta-
neously by a MW irradiation and when T�1

1;a � T�1
1n , the following

relations between the populations will be reached after some time:

p a
a;b


b; b
n; t

� �
¼ eep ba;bb; b
n; t

� �
¼ eep a
a;b



b;a
n; t

� �
¼ e2

e p ba;bb;a
n; t
� �

ð19Þ

and

p aa;ab; b
n; t
� �

¼ eep b
a;a


b; b
n; t

� �
¼ eep aa;ab;a
n; t

� �
¼ e2

e p b
a;a


b;a
n; t

� �
; ð20Þ

where ee = exp{ � ⁄xe/kBT} is the Boltzmann factor for the electrons.
In addition the T�1

1;b rate will maintain the condition

p va;bb;v
n; t
� �

¼ eepðva;ab;v
n; tÞ: ð21Þ

A straightforward check shows then that the total nuclear polariza-
tion becomes Pn(t) = Pe(0). The same type of calculation for the ZQan

transitions will result in Pn(t) = � Pe(0).
When we are dealing with bi-radicals we can expect their elec-

tron dipolar interactions to be large, and for most of their orienta-
tions it will not be possible to saturate both DQan or ZQan dipolar
satellites by a single MW irradiation. In such an event the effect
of the irradiation, together with T�1

1;a, will result either in Eq. (19)
or Eq. (20). However, T�1

1;b will cause the steady state populations
to satisfy both equations, resulting again in polarizations of the
form Pi(t) = ± Pe(0). This is in contrast to the effect of the splitting
of the DQan and ZQan transitions due to the presence of additional
core nuclei, which reduces the end polarizations [15].

When dxe ffi ± xn and a MW field is applied on one of the DQan-,
ZQbn-, or ZQan-, DQbn-CE dipolar satellites, the CE-DNP mechanism
is the source of the enhancement. For example, when both of the
dipolar split DQan transitions and the four SQbn transitions are sat-
urated by a single MW field, we get three sets of equal populations:

pðaa;ab; b
n; tÞ ¼ pða
a;b


b; b
n; tÞ

pðaa;ab;a
n; tÞ ¼ pððaa;bb;anÞ
; tÞ ¼ pððba;ab; bnÞ

; tÞ

¼ pðba; bb; b
n; tÞ
pðb
a;a
b;a
n; tÞ ¼ pðba; bb; a
n; tÞ:

ð22Þ

These populations will be separated by the action of T�1
1;a and will re-

sult again in Pn(t) = +Pa(0). When the MW irradiation saturates only
one of the dipolar split DQan–CE transitions and two of the SQbn

transitions, two groups of equal populations are obtained:

p ðaa; bb; anÞ
; tð Þ ¼ pððba;ab; bnÞ

; tÞ ¼ p ba;bb; b
n; t

� �
p b
a;a



b;a
n; t

� �
¼ p ba; bb; a
n; t

� �
:

ð23Þ

The effect of the electron T�1
1;a and T�1

1;b spin lattice relaxation rates is
not as simple as before. The end population Pn(t) in this case de-
pends on the relative values of the relaxation rates of the two elec-
trons, and can vary between Pe(0) (for T�1

1;a � T�1
1;b) and values

smaller than 0.5Pe(0) (for T�1
1;a � T�1

1;b). A numerical example of this
will be shown in the next section. Other irradiation schemes, such
as a MW field on only one of the SQb transitions, could also have
been considered.

This discussion shows that the DNP enhancement depends on
the ability to saturate the DQen or ZQen transitions in the system,
combined with the effect of T�1

1;a and T�1
1;b. As a result large polariza-

tions can be reached even when only parts of these transitions are
saturated.

The on-resonance saturation level of the different transitions

jkki � jkk0 i depends on the values of x2
1kk0T1;kk0T2;kk0

n o
and possible

combinations of spin lattice relaxation pathways in the system that
can replace T�1

1;kk0 [15]. The width of the off-resonance MW excita-
tion profile of a transition can be characterized by the off reso-
nance value Dx1=2;kk0 at which the steady state population
difference pkðtÞ � pk0 ðtÞ reaches a value that is half of the difference
at thermal equilibrium. When the effective MW field is strong en-
ough to saturate a transition on resonance, with the saturation
condition x2

1kk0T1;kk0T2;kk0 � 1, this width is given by

Dx1=2;kk0 � x1kk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1;kk0=T2;kk0

q
. In the case of the SE this is given by

Dx1=2;SE � sSEx1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1;DQ=ZQ=T2;e

p
for DQ or ZQ irradiation, with T1DQ/

ZQ in the order of T1n and T1,en. At the ideal CE condition we get
Dx1=2;SE � 1ffiffi

2
p x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T1;e=T2;e

p
. As will be also shown numerically in

the next section, the CE-DNP mechanism can have a significantly
broader excitation bandwidth relative to the SE-DNP mechanism.
The first can therefore be much more efficient. Additionally, the in-
crease in the effective MW irradiation strength of CE-DNP is ex-
pected to play a significant role during the DNP-assisted spin
diffusion process polarizing the bulk.

The (not necessarily exponential) rise time of the nuclear
polarization in the SE case (neglecting off resonance irradiation
of SQ transitions) was shown [15] to be limited by T1,e [ sDNP [

T1,DQ/ZQ,T1,n. In the case of CE-DNP T1,DQ/ZQ � 2T1,e and the value
of sDNP will be in the order of T1,e.

In the next section frequency profiles of the steady state polar-
izations, obtained by solving the spin density operator numerically,
together with nuclear polarization build up curves of a {eb � ea � n}
spin system are shown.

3.4. Numerical simulations

The interaction and relaxation parameters of the three-spin sys-
tem under consideration with two electrons and one proton
{eb � ea � n}, are summarized in Table 1. To simplify the interpre-
tation of the numerical results we have chosen a system in which
the nucleus is positioned closer to electron a than to electron b,
resulting in jAz,bnj � jAz,anj, and jA�bnj � jA

�
anj. The electron dipolar

interaction strength was chosen to correspond to an electron–elec-
tron distance of 12.8 Å, as in TOTAPOL radicals [20]. The interaction
and relaxation parameters are similar to values found in DNP
experiments. The MW power was chosen such that irradiated tran-
sitions can reach saturation when irradiated on resonance.

Fig. 2 shows the nuclear steady state polarization as a function
of the MW frequency xMW, for different values of dxe = xa �xb. In



Table 1
The interaction and relaxation parameters used during
the simulations for a {eb � ea � n} spin system. All other
parameters, and modifications of the values given here,
are given in the figure captions. The interactions were
calculated for an electron b positioned at a distance
12.8 Å away from electron a in the x direction, and a
distance vector �ran connecting nucleus n with electron a
with j�ranj ¼ 4:41 Å and making an angle of 450 with the
z�axis. A temperature of 10 K was used in all relevant
simulations.

Parameter Value

Dab/2p �12.46 MHz
Az,an/2p �0.46 MHz
Az,bn/2p 0.02 MHz
Aþan=2p 1.38 MHz

Aþbn=2p 0.01 MHz
xn/2p 144 MHz⁄

x1/2p 0.1 MHz
T1,a/b 10 ms
T1,an 2.5 s
T1,bn 1000 s⁄⁄

T1,n 10 s⁄⁄

T2e 10 ls
T2n 1 ms

⁄ Simulations were performed for 1H nuclei.
⁄⁄ Unless stated otherwise, this value was used for all
nuclei in the spin systems.

34 Y. Hovav et al. / Journal of Magnetic Resonance 214 (2012) 29–41
all cases we keep xa fixed and change the value of xb, for simplic-
ity. When dxe > xn (in (a)) the nuclear polarization is determined
mainly by the SE-DNP mechanism of electron a. The electron dipo-
lar splitting does not cause any reduction of the maximal polariza-
tion, which reaches a value of jPn(t)j ’ Pe(0), as in an {ea � n}
system. In addition some hyper-polarization is obtained when irra-
diating the DQbn or ZQbn transitions of electron b. This originates
from a small state mixing due to a combination of the dipolar
interaction between a and b and the hyperfine interaction between
a and n.

Next, the nuclear polarization is calculated at the CE condition
dxe = xn + dCE (in (b)), where dCE represents some higher order cor-
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Fig. 2. The calculated steady state nuclear polarization of a {eb � ea � n} spin system as a
with respect to xa such that in (a) dxe/2p = 200 MHz, in (b) dxe/2p = (xn + dCE

2p ’ � 143.46 MHz. The position of the xa/2p and xb/2p frequencies are marked by ar
In (d) the calculation is repeated after increasing T1,a by a factor of ten (gray line).
rection to the degeneracy condition, and is in this example about
equal to dCE � D2

ab=2xn. The simulated Pn(t) shows a polarization
profile that is much broader around xa and xb than for the pure
SE case. For the MW irradiation at each of the dipolar DQan–CE sa-
tellite transitions the end polarization reaches a value of about
jPn(t)j � 0.7Pe(0). When the resonance frequencies of the two elec-
trons are about equal, jdxej < jDabj, (in (c)) the dipolar state mixing
increases the effective MW field on the DQbn and ZQbn transitions
and shifts the energies of the system. The polarization profile for
the system at its second CE condition (black line in (d)), when
dxe = �xn � dCE is also shown. The order of the signs of the
enhancements for increasing xMW is the same as in the first CE
case, and follows the order for SE-DNP of each electron.

So far we assumed that the two electrons have the same
spin–lattice relaxation rate. We next consider a 10-fold increase
in the relaxation time of electron a, as given by the gray line in
Fig. 2d. When the SQa transition is affected by the irradiation, this
results in an increase of the enhancement width and an increase in
the maximal polarization. The former is due to broader MW
excitation width and the latter due to an increase in the T1,a/T1,b

ratio, as was previously explained. When the SQb transition is
irradiated, the enhancement width remains the same, but the
maximal enhancement decreases. Similar results can be obtained
for a 10-fold increase in T1,b.

To show the gradual transfer from CE- to SE-DNP enhancement in
the same spin system, we consider a three-spin system close to the
CE condition dxe = xn + dCE. In Fig. 3a a contour of the steady state
nuclear polarization is plotted as a function of the MW irradiation
frequency aroundxMW = xa �xn + jDabj (x-axis), and of dxe (y-axis)
for a fixed xa value. A close-up of the contour around the CE condi-
tion is shown in Fig. 3b. We observe again the broad MW frequency
dependence of the enhancement at the CE condition (marked by an
arrow), resulting from the high effective MW field. Note that the
polarization profile as a function of dxe is rather narrow. Further-
more, it is interesting to notice that when moving away from the
CE condition the enhancement varies as a function of dxe, reaching
values close to zero or even larger than one. Here we will not con-
sider these localized polarization variations any further.
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function the MW irradiation frequency. The value of xb was set at different values
)/2p ’ 143.46 MHz, in (c) dxe/2p = 10 MHz, and in (d) dxe/2p = � (xn + dCE)/
rows. The values of the interaction and relaxation parameters are given in Table 1.
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Fig. 3. In (a) a 2D map showing the calculated steady state nuclear polarization of a
{eb � ea � n} spin system as a function of the MW irradiation frequency, xMW, and of
the difference between the EPR transition frequencies of the 2 electrons, dxe. A
selected area of this contour is repeated in (b). In (c) only the contour line of
Pn(t) = 0.4Pe(0) is drawn for the relaxation parameters used in (a) and (b), as well as
for a four fold increase of T1,a and T1,a, or of T1,an. In all cases the MW irradiation was
performed around xMW ’xa �xn � Dab, and around dxe = xn. All other interaction
and relaxation parameters are given in Table 1.
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Fig. 4. The dependence of the steady state nuclear polarization of a {eb � ea � n}
spin system at its CE condition dxe/2p = (xn + dCE)/2p ’ 143.46 MHz on the MW
irradiation intensity. This intensity was set at x1/2p = 0.1 MHz (solid black line),
1 MHz (solid gray line) and 3 MHz (dashed black line). All other interaction and
relaxation parameters are given in Table 1.
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The contours of constant polarization around the CE condition
are strongly dependent on the electron and cross relaxation values,
T1,e and T1,en. This is demonstrated in Fig. 3c, where the
Pn(t) = 0.4Pe(0) contour lines are drawn. An increase of T1,e broad-
ens the area of CE-DNP polarization in the xMW direction and keeps
the width as a function of dxe constant, while an increase in T1,an

results in an opposite effect. A change in T1,n broadens the contour
line in a similar manner as observed for T1,an.

The effect of the MW irradiation strength on the nuclear steady
state polarization at the dxe = xn + dCE CE condition is shown in
Fig. 4. When x1/2p = 0.1 MHz (solid black line) the MW irradiation
is not sufficient to excite simultaneously the two dipolar DQ/ZQ
satellites of the electrons. Increasing the MW intensity to 1 MHz
(gray line) the off-resonance profiles of the polarization broadens
and the maximal enhancements reach about the values ±1. Increas-
ing the MW strength even more, x1 = 3 MHz (dashed line), results
in a lowering of the maximal enhancements due to on- and off-res-
onance irradiation of all EPR transitions. Here we considered SQ
MW irradiation fields that are stronger than the hyperfine interac-
tions, and did not address complications arising when this is not
the case [22].

Typical temporal evolutions of the nuclear polarization during
on and off-resonance MW irradiation of the DQan transitions are
shown in Fig. 5 for a system at and away from the CE condition
(note the difference in the time scales in the two figures). The
rise-time sDNP of the nuclear polarization for the CE case (Fig. 5a)
for on- and off-resonance irradiation are similar and in the order
of T1,DQ/ZQ, which can become equal to the upper limit 2T1e as dis-
cussed previously. The large effective MW field saturates the irra-
diated transition at an even faster time scale, as shown in the
insert. This large field also results in a broad enhancement band-
width as can be seen from the off-resonance dependence of the
curves. Fig. 5b shows typical SE type of time evolutions, for a sys-
tem in which the CE condition is not fulfilled. These curves demon-
strate the slowing down of the rise time, reaching its limiting
values, T1,n, T1,DQ/ZQ when moving off-resonance. In this case the
off-resonance polarization bandwidth becomes again narrow. For
completeness, the time evolution of the populations in the on-res-
onance cases are shown in Fig. 5c and d.
4. Two electrons and many (core) nuclei

In this section we examine the DNP mechanism in systems con-
taining two electrons and a multiple number of core nuclei. These
systems are relevant for example when considering the spin
dynamics of DNP on glassy solid solutions containing a low con-
centration of bi-radicals. The numerical results for the polariza-
tions of the nuclei, using the master equation of the density
operator in Liouville space, are evaluated for systems of up to 5-
spins. Because the effective MW fields can become large in the
CE case, we did not use the Hilbert space calculations as we did be-
fore in Ref. [17]. We note however, that while these calculations
are not strictly valid in our case, they could have given rather accu-
rate results for certain sets of interaction and relaxation
parameters.
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Fig. 6. A 3D representation of the ‘‘core’’ region around an electron pair calculated
according to Eq. (24) with f = 5. This example was calculated assuming a simple
cubic lattice of protons, with a lattice parameter of 3.1 Å and its z-axis aligned with
the direction of the external magnetic field. The electrons were positioned at [0,0,0]
and [0,�4,0] on the lattice.

36 Y. Hovav et al. / Journal of Magnetic Resonance 214 (2012) 29–41
4.1. The core and bulk nuclei

Before considering the DNP enhancement of multi-nuclear core
systems surrounding a single electron pair, it is necessary to define
the core. We realize that the actual nuclear signals we measure in
experiments originate mainly from the bulk nuclei in the sample.
Thus a description of the DNP mechanism must take into account
the polarization transfer from the electrons to the directly hyper-
fine coupled core nuclei, and to the bulk nuclei by the nuclear di-
pole–dipole interaction. These processes are both driven by MW
irradiation and electron spin relaxation . A possible distinction be-
tween the core and bulk nuclei has been discussed in our previous
publications [17,15] and depends on the relative strength of the
Hhfi terms with respect to the nuclear dipole–dipole interaction
terms of Hd, since the first can truncate the off diagonal flip-flop
terms of the second. For the SE case we previously defined a some-
what arbitrary boundary condition distinguishing between the
core and bulk nuclei. The core nuclei were chosen as those that
have hyperfine coupling constants that are larger than their dipolar
flip-flop matrix elements with neighboring nuclei.

In systems based on interacting electrons in mono-radical solu-
tions or on bi-radical solutions, the core nuclei interact with two
electrons. We then define a nucleus i to belong to the core accord-
ing to the condition

fjdijj=2 <
X
e¼a;b

1
2
jðAz;ei � Az;ejÞj þ

jA�e1j
2 � jA�e2j

2

8jxnj
ð24Þ

for all its close neighboring nuclei j. The core region in the case of a
cubic nuclear lattice surrounding two coupled electrons, choosing
f = 5, is shown in Fig. 6. All other relevant interaction parameters
used to generate the shape of the core are summarized in the figure
caption. According to this somewhat arbitrary definition, the polar-
ization inside the core is mainly driven directly by the electron-nu-
clear interactions, while the bulk polarization enhancement is
assisted by the core-bulk and bulk-bulk dipolar interactions. How-
ever we should realize that for strong enough MW irradiation even
the remaining dipolar interaction may be sufficient to transfer
polarization inside the core region.
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2Dab

ωa-ωn

Az,b3
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Fig. 7. Schematic representations of the positions of the DQa1, DQa2 and SQb

transitions of a five-spin system {ea � eb � n1�3}. Nuclei 1 and 2 interact only with
electron a, and nucleus 3 only with electron b, with 0 < Az,a1 < Az,b3 < Az,a2 < Dab. The
frequency difference dxe was set equal to xn � 1

2 ðAz;b3 þ Az;a2Þ. In the lower diagram
the DQa1 transitions are in black and the DQa2transitions in gray.
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4.2. The SE and CE transitions

To follow the enhancement of the multi-nuclear core surround-
ing the electron pair we again restrict ourselves to nuclei with
hyperfine coefficients that are smaller than the nuclear Zeeman
frequency, jAz;eij; jA�eij � jxnj, for e ¼ a; b, i = 1, . . . ,Nn, and with nu-
clear dipolar interactions that are quenched by the hyperfine inter-
action. As long as we are removed from any spin-state
degeneracies, and jdxej � jDabj, the eigenstates of the Hamiltonian
stay almost equal to the product states, jv
a;v
b;v
1; . . .v
k . . . ;v
Nn

i,
with small state mixing due the hyperfine and electron dipolar
interactions, as before. This state mixing, accompanied with small
energy shifts, can again create small effective irradiation fields on
the ZQei and DQei transitions. Each of these transitions is character-
ized by a single nuclear spin flip ai M bi and simultaneously a sin-
gle electron spin flip ae M be e = a,b. Higher order MW matrix
elements, involving more than a single nuclear transition, can be
neglected in our case. Concentrating on one particular nucleus k
and one electron a, the presence of all other nuclei j – k generates
a set of DQak transitions with frequencies which are given to first
order by

xDQ ;ak ¼ xa �xn � Dab þ
1
2

Az;bk

� �
þ 1

2

X
j–k

ð�ÞjAz;aj: ð25Þ

The first ±1 sign is determined by the state ab or bb of electron b, and
the other (±1)j signs by the aj or bj state. The effective MW fields for
these transitions, which are responsible for SE-DNP, are all of the or-
der of jDA�k j=2xn

� �
x1 or jdA�k j=2xn

� �
x1. The expressions for the fre-

quencies of the ZQ transitions are the same as in Eq. (25), except for
+xn instead of �xn.

A CE condition for spin k corresponds to a degeneracy between
two states. For example the states jaa; bb;v1; . . . ;ak; . . . ;vNn

i and
jba;ab;v1; . . . ; bk; . . . ;vNn

i become degenerate, to first order, when
one of the following equalities are valid:

dxe ffi xn �
1
2

X
j–k

ð�ÞjdAzj: ð26Þ

At each of these CE conditions there is a single DQak transition that
has the same frequency as a SQb transition:

xSQ ;b ¼ xb � Dab þ
1
2

X
j

ð�ÞjAz;aj: ð27Þ

Other CE conditions occur when the frequencies of ZQak and SQb

transitions become equal. The effective MW fields of these DQ- or
ZQ-CE transitions can again become about as strong as x1=

ffiffiffi
2
p

.
To show this effect we consider a spin system with two electron

a, b, and three nuclei 1–3. For simplicity we assume that nuclei 1
and 2 interact only with electron a, and nucleus 3 only with elec-
tron b. The DQa1 (down, black), DQa2 (down, gray) and the SQb

(up) spectra are schematically shown in Fig. 7, for 0 < Az,a1 <
Az,b3 < Az,a2 < Dab. The four DQa1 transitions are positioned at
xa �xn � Dab � 1

2 Az;a2, while the four SQb transitions are posi-
tioned at xb � Dab � 1

2 Az;b3. In the figure we show the DQak–CE tran-
sition at

xDQ ;ak ¼ xa �xn � Dþ 1
2

Az;a2 ¼ xb � D� 1
2

Az;b3 ð28Þ

overlapping with xSQ,b. This corresponds to the jaa, bb; a1, a2, b3i to
jba, bb; b1, a2, b3i DQ transition, and to the jba, ab; b1, a2, b3i to jba,
bb; b1, a2, b3i SQb transition. In such a case the jaa, bb; a1, a2, b3i and
jba, ab; b1, a2, b3i energy levels are degenerate, and the
dxe ¼ xn � 1

2 ðAz;a2 þ Az;b3Þ CE condition is satisfied.
To conclude, the ZQak and DQak transitions of a particular elec-

tron-nuclear spin pair a � k will be spread over a wide range of fre-
quencies, due to the presence of the additional electron b and the
nuclei j – k. For a given electron configuration some of these SE
DQ or ZQ transitions can become DQ-CE or ZQ-CE transitions. Thus
for some value of xMW the MW field can excite, for example, a band
of DQak transitions, of which only a part will be DQak–CE
transitions.
4.3. Ideal DNP experiments

We now consider the effect of MW irradiation on some or all of
the DQai transitions on the resulting nuclear polarization. When all
of the DQai or ZQai transitions are saturated by the MW irradiation
it can be shown that all polarizations become jPi(t)j = Pa(0), which
corresponds to an ideal SE-DNP process. This can be derived using
the same arguments as in Ref. [15] for a single electron. The same
polarizations can be achieved when the MW irradiation excites
only one of the electron dipolar DQ/ZQ satellites, as was discussed
earlier.

We next discuss the effect of a MW irradiation exciting only a
fraction fi of the DQai transitions in the case of SE-DNP. We demon-
strate this here by assuming an irradiation of a single DQai transi-
tion in a spin system of the form {eb � ea � n1 � n2} that is far from
any CE condition. The addition of one nucleus, denoted by 2, to the
{eb � ea � n1} system induces a hyperfine spitting of the DQa1 tran-
sitions, resulting in four DQa1 transitions. Irradiation of only one of
these transitions, for example jba, bb; b1, a2 i � jai, bb; a1, a2i, will
result in

p a
a; b


b; b
1;a



2; t

� �
¼ eep ba;bb; b
1;a



2; t

� �
¼ eep a
a;b



b;a
1;a



2; t

� �
¼ e2

e p ba;bb;a
1;a


2; t

� �
; ð29Þ

in analogy with Eq. (19), and the action of T�1
1;b will result in

eep aa;ab; b
1;a


2; t

� �
¼ e2

e p b
a;a


b; b
1;a



2; t

� �
¼ e2

e p aa;ab; a
1;a


2; t

� �
¼ e3

e p b
a;a


b; a
1;a



2; t

� �
: ð30Þ

The overall population distribution here looks as if two of the four
DQa1lines are saturated and we expect that the end polarizations
become Pi(t) = 0.5Pe(0). However, the T�1

1;2 relaxation rate of nucleus
2 can enhance these end polarization. In contrast, irradiation on the
DQa2 transition may result in a decrease of the final polarization of
nucleus 1. Both of these effects were shown for an {ea � n1 � n2}sys-
tem in Ref. [15]. The combined effect of all relaxation parameters
and DQai irradiation pathways is hard to envision exactly. This be-
comes even harder when considering the effects of MW irradiation
on the SQb transitions close to the CE condition, or the effects of fast
cross relaxation rates. However, in all cases the overall effect will
result in some polarization enhancement.
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Fig. 8. The steady state nuclear polarization of nucleus 1, P1(t), in a five-spin system
{ea � eb � n1�3} during a cw MW irradiation as a function of the MW frequency xMW

and the difference between the electron frequencies dxe. During the simulations the
MW intensity was set equal in (a) to x1/2p = 0.1 MHz and in (b) to 0.5 MHz. In (c)
the temporal evolution of P1(t) with a MW frequency at xMW/2p = � 129.1 MHz is
shown for dxe/2p = 141.3 MHz (solid black line), 142.8 MHz (solid gray line) and
150 MHz (dashed black line), as indicated by the arrows in contour (a). The MW
intensity was set at x1/2p = 0.1 MHz. The two electrons and nucleus 1 where
positioned as described in Table 1 (for n = 1), resulting in the same spin-interaction
strength. Nuclei 2,3 were added to this spin system at positions [2.8,0,0.6] Å and
[�1.2,0,4.3] Å relative to electron a. This resulted in Az;a2=2p ¼ 2:85 MHz;
Az;a3=2p ¼ �1:5 MHz; Az;b2=2p ¼ 0:02 MHz; Az;b3=2p ¼ 0:03 MHz; Aþa2=2p ¼ 2:11
MHz; Aþa3=2p ¼ 0:77 MHz; Aþb2=2p < 0:01 MHz; Aþb3=2p ¼ 0:04 MHz and jdi<jj <
8 kHz. The cross relaxation times T1,aj were set equal to 2.5 s, 0.2 s, and 2.5 s for
j = 1, 2, 3, respectively, and T1,bj equal to 1000 s. All other interaction and relaxation
parameters are given in Table 1.
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4.4. A two-electron and three-nuclear spin system

To demonstrate the effect of the CE conditions on the nuclear
enhancements we first consider a simple spin system with two
interacting electrons, a and b, and three interacting nuclei 1–3.
For simplicity we consider a spin system with all nuclei positioned
close to the a electron, with the electrons and nucleus 1 having the
same parameters as in the previous simulations (see Table 1). All
other interactions and relaxations are given in the caption of
Fig. 8. The steady state polarization of nucleus 1 as a function of
xMW and the value of dxe is plotted in Fig. 8a. For simplicity we
again consider only MW irradiation around xMW �xa �xn + jDabj,
and vary dxe in the vicinity of the CE condition dxe �xn, as was
done in the previous contours. This complex contour demonstrates
the interplay between the SE-DNP and the CE-DNP mechanisms for
the same spin system. The four narrow vertical SE features in the
contour are positioned at the DQa1 transitions, with frequencies
of xMW ’xa �xn � Dab ± Az,a2 ± Az,a3. The four broad horizontal
features correspond to CE conditions at dxe ’xn ± Az,a2 ± Az,a3.
Comparing this figure with Fig. 2b shows that when a single SE
DQa1 (black arrow in the figure, for example) or a DQa1–CE transi-
tion (lower white arrow, for example) is affected the polarization is
greatly reduced. However, when several transitions are affected,
for example due to off-resonance irradiation on the DQa1–CE and
on-resonance irradiation on the SE DQ transition (upper white ar-
row, for example) the polarization is increased. This can also be
seen in Fig. 8b, where the MW irradiation strength was increased
to x1/2p = 0.5 MHz. We note that the resulting polarization can in-
crease due to a decrease in T�1

1;e1 or T�1
1;1 or an increase in T�1

1;ej or T�1
1;j

of j = 2, 3.
Polarization build up curves for the five-spin system are shown

in Fig. 8c. These curves are evaluated for the three conditions
which were mentioned earlier and that are indicated by the arrows
in Fig. 8a: (i) a single SE DQa1 transition is irradiated on-resonance
(dashed black line); (ii) a single DQa1–CE transition is irradiated
on-resonance (solid black line); and (iii) a single SE DQa1 transition
is irradiated on-resonance simultaneously with a DQa1–CE transi-
tion off-resonance (solid gray line). A MW irradiation of x1/
2p = 0.1 MHz was used here, as in Fig. 8a. The initial buildup time
is shown in the insert of this figure. When only the SE mechanism
is involved the polarization buildup is gradual, while for the CE
mechanism there is an initial increase in the polarization. In all
cases the steady state is reached in the time scale of T1n. This is
due to the contribution of the T1,j and T1,ej relaxation process of nu-
clei j = 2, 3 to the polarization of nucleus 1, when only a part of the
DQa1 transitions are affected by the MW irradiation.

4.5. A two-electron and multi-nuclear spin system

We next examine the DNP mechanism in a system composed of
two coupled electrons, a and b, and a large number of core nuclei
Nn� 1. The nuclear polarizations of this system can not be simu-
lated using the master equation, but we will try to estimate the
influence of the presence of nuclei j – k on the polarization
enhancement of one particular nucleus k. The DQak and ZQak tran-
sitions, as well as the possible DQak–CE and ZQak–CE transitions,
are spread over a frequency range determined by the hyperfine
coupling coefficients of all other nuclei Aaj with j – k, as given in
Eq. (25). As a result only a fraction fk of all DQak and ZQak transi-
tions are affected by a MW irradiation field. Although this fraction
is not the only factor determining the enhancement of nucleus k, as
was explained above, it clearly plays a significant role. Once again,
for fk = 1 we can expect substantial enhancements, up to full polar-
ization transfer jPk(t)j = Pa,b(0), by the SE process, when
T�1

1;k; T
�1
DQ=ZQ � T�1

1e . On the other hand when fk approaches zero the
k-spin enhancement will also become zero. This, in addition to
the results of Fig. 8, indicates that globally Pk(t) will increase with
increasing fk. From the earlier discussion we can however expect
that the spin lattice relaxations of the electrons and nuclei
j – k will tend to increase the polarization Pk(t) > fkPe(0), while
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Fig. 9. The fraction of DQak transitions fk(xMW, dxe) affected by MW irradiation.
This was calculated for a spin system composed of two electrons a and b
surrounded by a cubic lattice of protons with a lattice constant of 3.1 Å of size
13 � 17 � 13 (x,y,z) spins. The external magnetic field is pointing in the z direction.
The electrons were put in the lattice at positions [0, ±2,0], and the nucleus k at
[0,5,0]. In (a) the nDQ,ak(xDQ,ak) spectrum (black line) is composed of all DQak

transitions with frequencies xDQ,ak close to xa �xn � Dab. The normalized number
of DQak transitions that become DQak–CE transitions is shown in (b), for different
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inefficient MW irradiation, and possibly also irradiation of SQ
transitions and partial excitation of fj transitions, will diminish it.

To estimate the dependence of fk on the MW frequency and on
the value of dxe, we will assume that the spread of the DQak, ZQak

and SQb transitions of the spin system are solely determined by the
secular terms of the hyperfine interaction and the dipolar interac-
tion between the two electrons. The evaluation of fk was done in
three steps:

(i) In the first step we calculated the normalized number of
DQak transitions, nDQ,ak(xDQ), around one of the dipolar sat-
ellites such as xDQ �xa �xn + jDabj. These transitions are
of the form jba,bb; bk, vj – k i � jaa, bb; ak, vj – ki, for all
j – k and vj – k = aj, bj. An example of a nDQ,ak spectrum is
shown in Fig. 9a for a cubic lattice of nuclei around two elec-
trons, as defined in the figure caption.

(ii) In the second step we determined for a given value of xDQ

and dxe (in the vicinity of xn) which part of these transitions
are overlapping with SQb transitions, resulting in the DQak–
CE transitions. The result of this calculation is shown in
Fig. 9b, where each point in the contour indicates the nor-
malized number of DQak transitions that have become
DQak–CE transitions for the specific xDQ and dxe values.

(iii) In the last step we calculated the value of fk(xMW, dxe) as a
function of the MW frequency xMW and of dxe. Here we
assumed that SE DQak and DQak–CE transitions in the range
xDQ ;ak ¼ xMW � 1

2 dxMW contribute to fk(xMW, dxe). The
width dxMW depends on the MW field strength and the
relaxation rates x1;kk0 ; T

�1
1kk0 ; T

�1
2;kk0

� �
, and will therefore vary

significantly between the two types of transitions. For each
dxe value only DQak-CE transitions in a range dxe � 1

2 dxCE

contribute to fk(xMW, dxe), while all other DQak transitions
are counted as SE transitions.

Fig. 9c shows the value of fk for different xMW and dxe values.
To obtain this contour we chose a rather high value of
dxCE = 1 MHz, and the dxMW values 1 MHz and 20 MHz for the
SE DQak and DQak–CE transitions, respectively. For example, the
area between the dashed lines in this Fig. 9b indicate the part of
the DQak–CE transitions that contribute to fk(xMW,dxe) for the
xMW and dxe values marked by the arrows. The SE DQak and
DQak–CE transitions affected by the MW field are shown schemat-
ically by the black and gray areas in Fig. 9a, respectively.

This calculation results in a rather low maximum value for fk of
about 12%. This indicates that to achieve higher polarizations it is
worthwhile to dilute the spin system, and in particular of nuclei
in proximity to the electrons.
dxe values. The calculation was performed by taking into account successively the
contribution of the secular part of the hyperfine interaction of each nucleus. The
changes in the DQak spectrum were calculated using Eq. (25). The frequencies at
which these transitions satisfy the CE condition, and overlap with a SQb transition,
were calculated using Eq. (26). The frequency of these new transitions were put on a
frequency grid with a resolution of 20 kHz. The fraction fk of the DQak transitions
that are excited by a MW irradiation at xMW for different dxe values is drawn in (c),
with the calculation performed as described in the text. The dashed area in (b) and
the black and gray areas in (a) show an example of this calculation, as indicated in
the text.
5. Discussion

In this publication we have characterized the spin dynamics of
CE-DNP processes in systems containing a pair of coupled electrons
interacting with a set of neighboring core nuclei. Here we have as-
sumed that the dipole–dipole interactions between these nuclei
are quenched by the hyperfine interactions. This study is a contin-
uation of our earlier investigation dealing with SE-DNP processes
in systems composed of a single electron interacting with a set of
neighboring core nuclei. The purpose of both studies has been to
determine the basic theoretical concepts describing the SE-DNP
and CE-DNP mechanisms by using quantum mechanical simula-
tions of model systems with an emphasis on the influence of the
spin relaxation processes essential for the polarization enhance-
ments. In these studies we did not intend to analyze specific exper-
imental results, but rather set a stage for the interpretation of
future DNP experiments on solids.
Using the same theoretical framework, we made a clear distinc-
tion between the spin behavior in the two model systems
fea � nNng and fea � eb � nNng. The spin dynamics of the DNP pro-
cess in the two electron case varies from the one electron case
when part of the DQan or ZQan transitions of a spin pair {ea � n}
overlaps with SQb transitions of electron b. As a result the effective
MW fields on the overlapping DQan transitions increase and the
bandwidth of the frequency profile of the DNP polarization broad-
ens. Similar as for SE-DNP, in the case of CE-DNP the electron
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spin–lattice relaxation is essential for achieving full polarization
transfer. Due to the large effective MW fields in CE-DNP the nuclear
polarization build up curves differ from those in SE-DNP. When
irradiating on-resonance the time it takes to reach saturation of
the DQ–CE or ZQ–CE transitions is typically faster than the electron
relaxation time T1,e, and the time-scale of the steady state polariza-
tion build-up will be in the order of this relaxation time. Addition-
ally, the large effective MW fields can enable efficient irradiation of
DQ-CE transitions many MHz off-resonance. At low MW powers or
far off-resonance the steady state polarization buildup time scales
will become dependent on cross relaxation times T1,DQ/ZQ, which in
the CE–DNP case are still in the order of T1,e. This is in contrast to
the SE-DNP mechanism, where the steady state buildup time-scale
can become very sensitive to the effective MW fields and off-reso-
nances and can reach the nuclear spin–lattice relaxation times. It
should be noted that these differences are relevant only when dis-
cussing the core nuclei. The build up of bulk polarization is related
to the DNP-assisted spin diffusion processes which will be dis-
cussed elsewhere.

The complexity of the spin dynamics in multi-nuclear systems
surrounding the electrons is a result of the fact that the DQ and
ZQ transitions of each electron-nuclear spin pair are split by the
hyperfine interaction of all other nuclei. If the MW irradiation af-
fects only a small part of these transitions the DNP enhancement
will be significantly reduced. Additionally, the CE condition is split,
such that when the electrons are at one of the CE conditions only a
small fraction of the DQ or ZQ transitions are CE transitions. This
therefore suggests that the DNP enhancement of the core nuclei
is only partially driven by CE-DNP processes, and that the total
enhancement must be characterized by a combination of SE-DNP
and CE-DNP processes.

Various aspects of the DNP spin dynamics were not discussed
here and they have to be investigated in future DNP studies. For
example, during our calculations we used relaxation parameters
that were not derived from basic relaxation theory, but were cho-
sen by considering values similar to the ones reported in the liter-
ature. It will however be necessary to examine the various
relaxation mechanisms involved in the DNP enhancement pro-
cesses and use or derive explicit expressions for the relaxation
rates originating from fluctuating interactions such as hyperfine
and dipolar interactions in the solid state [27]. In addition electron
relaxation mechanisms, such as phonon limited direct and Raman
relaxation processes [28], should also be incorporated in these
derivations.

Another issue that needs additional attention is the DNP-as-
sisted spin diffusion process polarizing the bulk. As mentioned ear-
lier we refrained here from dealing with these spin diffusion
processes [17]. These are however essential for the understanding
of the experimental data and we are currently in the process of
addressing these mechanisms for the CE-DNP case. The growth of
polarization of a bulk nucleus depends on the effective MW fields
of the spin system and their contributions to that particular nu-
cleus. These effective fields are distributed over transitions be-
tween the eigenstates of the whole spin system and are
determined by the diagonalization of the core-bulk and bulk-bulk
dipolar interactions. Large effective MW fields on the core nuclei
will result in larger fields driving the bulk polarization, and as a re-
sult more bulk nuclei will be effectively polarized. These issues
must be elaborated on further and must be addressed when ana-
lyzing experimental DNP results.

In practice many DNP experiments are performed on amor-
phous glasses containing randomly oriented radicals. Thus for
example during DNP experiments using nitroxide radicals we
encounter broad powder EPR line shapes, induced by g-tensor
anisotropies, and MW irradiation fields that only excite transitions
close to resonance. This means that only a fraction of the electrons
in the sample contribute actively to the nuclear polarization
enhancement. In the case of bi-radicals in static samples their ran-
dom orientation and the corresponding SQ transition frequencies
of the two electron spins strongly reduces the number of electron
pairs in the sample that can directly contribute to the CE-DNP pro-
cesses. When mono-radicals are the source of the paired electrons
in the system, their concentration determines the percentage of
electrons that contribute to CE-DNP enhancement. Thus in both
cases, when CE-DNP is the major polarization mechanism in a sam-
ple, the sphere of enhanced bulk nuclei around an electron pair at a
CE condition must be large relative to the same sphere around
electrons that are not at a CE condition. While in every powder
experiment both DNP processes are simultaneously active, the
CE-DNP process will determine the overall polarization only when
the small fraction of ‘‘CE spin pairs’’ dominate the larger fraction of
‘‘SE electrons’’ in enhancing the bulk.

Many electrons in the sample are not actively involved in the
DNP enhancement process for any MW irradiation when the EPR
powder line shape is broad. Then a question that must be answered
is in what manner do these non-DNP active electrons influence the
SE-DNP and CE-DNP processes in the sample. Many of these elec-
trons interact with the active electrons and cause a broadening
of the DQ spectra. Perhaps we would then expect that this broad-
ening will reduce the MW excitation efficiency and would reduce
the final nuclear enhancement. This however is not the case, as will
be shown in a later publication. When considering some aspects of
the TM DNP process, the non-directly DNP active electrons support
the overall polarization enhancement process.

Describing DNP results involving nitroxide radicals as the un-
paired electron source, we must take into account the presence
of the 14N nuclei that are strongly hyperfine coupled to each elec-
tron. A careful investigation of the influence of the nitrogen atoms
on the DNP processes is then necessary. This was not discussed
here in order not to complicate the present derivations. A comment
we must however make is that for short spin–lattice relaxation
times of the 14N nuclei, irradiation on one of the three satellite
bands of the DQ transitions, corresponding to the nitrogen hyper-
fine splitting, can result in nuclear polarizations that are signifi-
cantly higher than 0.3Pe(0).

Finally we should mention the influence of sample spinning on
the DNP processes encountered in MAS-DNP in solid state NMR
[29]. Due to this sample rotation, the MW irradiation excites large
parts of the DQ, ZQ and EPR transitions of the electrons in the
amorphous powder samples and we can expect a significant in-
crease in the number of electrons contributing to the total bulk
polarization. These effects and others must be formulated and ta-
ken into account when describing the SE- and CE-DNP mechanism
in rotating solids.
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